Calculus I	Name:
Study Guide 5	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. (4 points) For any given $\epsilon > 0$, find $\delta > 0$ such that $\lim_{x \to 4} \left(\frac{1}{4}x - 1\right) = 0$.

2. (4 points) For any given $\epsilon > 0$, find $\delta > 0$ such that $\lim_{x \to -5} (-3x + 2) = 17$.

2. _____

3. (5 points) For any given $\epsilon > 0$, find $0 < \delta \le 1$ such that $\lim_{x \to 1} \sqrt{x} = 1$.

3. ____

4. (4 points) Find
$$\lim_{x \to a} f(x)$$
 and $\lim_{x \to a} g(x)$ if

$$\begin{cases} \lim_{x \to a} \left[3f(x) - 2g(x)\right] = 11\\ \lim_{x \to a} \left[2f(x) + 3g(x)\right] = 3 \end{cases}$$

4. ____

5. (4 points) Find and simplify the difference quotient for f(x) = mx, and then evaluate for h = 0.

6. (4 points) Evaluate $\lim_{x \to 0} f(x)$ if $1 - x^2 \le f(x) \le \cos x$ for all $x \in (-\pi/2, \pi/2)$.

6._

5. _____

7. (4 points) For any given $\epsilon > 0$, find $\delta > 0$ such that $\lim_{x \to -3} (|x| - 4) = -1$.

7. _____

8. -

8. (4 points) For any given $\epsilon > 0$, find $\delta > 0$ such that $\lim_{x \to 0} \sqrt[5]{x} = 0$.

9. (4 points) For any given $\epsilon > 0$, find $\delta > 0$ such that $\lim_{x \to -3} (x^2 + 6x) = -9$.

9.

10. (4 points) Evaluate $\lim_{x \to a} \frac{x^4 - a^4}{x^2 - a^2}$.

11. (4 points) Evaluate $\lim_{x \to 0} \frac{x}{\sqrt{3+2x} - \sqrt{3-2x}}$.

11. _____

10. _____

12. (5 points) Evaluate
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 for $f(x) = \frac{1}{x}$.

12. _____